Search results
Results from the WOW.Com Content Network
The continental crust on the downgoing plate is deeply subducted as part of the downgoing plate during collision, defined as buoyant crust entering a subduction zone. An unknown proportion of subducted continental crust returns to the surface as ultra-high pressure (UHP) metamorphic terranes, which contain metamorphic coesite and/or diamond plus or minus unusual silicon-rich garnets and/or ...
Orogenic belts occur where two continental plates collide and push upwards to form large mountain ranges. These are also known as collision boundaries. Subduction zones occur where an oceanic plate meets a continental plate and is pushed underneath it. Subduction zones are marked by oceanic trenches. The descending end of the oceanic plate ...
Some lithospheric plates consist of both continental and oceanic lithosphere. In some instances, initial convergence with another plate will destroy oceanic lithosphere, leading to convergence of two continental plates. Neither continental plate will subduct. It is likely that the plate may break along the boundary of continental and oceanic crust.
Map showing Earth's principal tectonic plates and their boundaries in detail. These plates comprise the bulk of the continents and the Pacific Ocean.For purposes of this list, a major plate is any plate with an area greater than 20 million km 2 (7.7 million sq mi)
Plate tectonics (from Latin tectonicus, from Ancient Greek τεκτονικός (tektonikós) 'pertaining to building') [1] is the scientific theory that Earth's lithosphere comprises a number of large tectonic plates, which have been slowly moving since 3–4 billion years ago.
When plates collide or undergo subduction (that is, ride one over another), the plates tend to buckle and fold, forming mountains. While volcanic arcs form at oceanic-continental plate boundaries, folding occurs at continental-continental plate boundaries.
Orogenic uplift is the result of tectonic-plate collisions and results in mountain ranges or a more modest uplift over a large region. Perhaps the most extreme form of orogenic uplift is a continental-continental crustal collision. In this process, two continents are sutured together, and large mountain ranges are produced.
Sketch of an oceanic plate subducting beneath a continental plate at a collisional plate boundary. The oceanic plate typically sinks at a high angle (exaggerated here). A volcanic arc grows above the subducting plate. Magma generated above the subducting slab rose into the North American continental crust about 200 to 300 miles (300 to 500 km ...