Search results
Results from the WOW.Com Content Network
If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗. Similarly, the function has a local minimum point at x ∗, if f(x ∗) ≤ f(x) for all x in X within distance ε of x ∗.
The function has its local and global minimum at =, but on no neighborhood of 0 is it decreasing down to or increasing up from 0 – it oscillates wildly near 0. This pathology can be understood because, while the function g is everywhere differentiable, it is not continuously differentiable: the limit of g ′ ( x ) {\displaystyle g'(x)} as x ...
Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...
Suppose f is a one-dimensional function, :, and assume that it is unimodal, that is, contains exactly one local minimum x* in a given interval [a,z]. This means that f is strictly decreasing in [a,x*] and strictly increasing in [x*,z]. There are several ways to find an (approximate) minimum point in this case.
After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:
Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at (x, y) implies that f xx and f yy have the same sign there. Therefore, the second condition, that f xx be greater (or less) than zero, could equivalently be that f yy or tr(H) = f xx + f yy be greater (or less ...
The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.
The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...