enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    Conics, also known as conic sections to emphasize their three-dimensional geometry, arise as the intersection of a plane with a cone. Degeneracy occurs when the plane contains the apex of the cone or when the cone degenerates to a cylinder and the plane is parallel to the axis of the cylinder. See Conic section#Degenerate cases for details.

  3. Degeneracy (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Degeneracy_(mathematics)

    A degenerate case thus has special features which makes it non-generic, or a special case. However, not all non-generic or special cases are degenerate. For example, right triangles, isosceles triangles and equilateral triangles are non-generic and non-degenerate. In fact, degenerate cases often correspond to singularities, either in the object ...

  4. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    All the conic sections share a reflection property that can be stated as: All mirrors in the shape of a non-degenerate conic section reflect light coming from or going toward one focus toward or away from the other focus. In the case of the parabola, the second focus needs to be thought of as infinitely far away, so that the light rays going ...

  5. Pascal's theorem - Wikipedia

    en.wikipedia.org/wiki/Pascal's_theorem

    Degenerate conics follow by continuity (the theorem is true for non-degenerate conics, and thus holds in the limit of degenerate conic). A short elementary proof of Pascal's theorem in the case of a circle was found by van Yzeren (1993), based on the proof in (Guggenheimer 1967). This proof proves the theorem for circle and then generalizes it ...

  6. Matrix representation of conic sections - Wikipedia

    en.wikipedia.org/wiki/Matrix_representation_of...

    In mathematics, the matrix representation of conic sections permits the tools of linear algebra to be used in the study of conic sections. It provides easy ways to calculate a conic section's axis , vertices , tangents and the pole and polar relationship between points and lines of the plane determined by the conic.

  7. General position - Wikipedia

    en.wikipedia.org/wiki/General_position

    If a set of points is not in general linear position, it is called a degenerate case or degenerate configuration, which implies that they satisfy a linear relation that need not always hold. A fundamental application is that, in the plane, five points determine a conic, as long as the points are in general linear position (no three are collinear).

  8. NYT ‘Connections’ Hints and Answers Today, Wednesday, January 8

    www.aol.com/nyt-connections-hints-answers-today...

    Spoilers ahead! We've warned you. We mean it. Read no further until you really want some clues or you've completely given up and want the answers ASAP. Get ready for all of today's NYT ...

  9. Steiner's conic problem - Wikipedia

    en.wikipedia.org/wiki/Steiner's_conic_problem

    The space of (possibly degenerate) conics in the complex projective plane CP 2 can be identified with the complex projective space CP 5 (since each conic is defined by a homogeneous degree-2 polynomial in three variables, with 6 complex coefficients, and multiplying such a polynomial by a non-zero complex number does not change the conic).