Search results
Results from the WOW.Com Content Network
The two rightmost columns indicate which irreducible representations describe the symmetry transformations of the three Cartesian coordinates (x, y and z), rotations about those three coordinates (R x, R y and R z), and functions of the quadratic terms of the coordinates(x 2, y 2, z 2, xy, xz, and yz).
The irreducible complex characters of a finite group form a character table which encodes much useful information about the group G in a concise form. Each row is labelled by an irreducible character and the entries in the row are the values of that character on any representative of the respective conjugacy class of G (because characters are class functions).
Irreducible representations are always indecomposable (i.e. cannot be decomposed further into a direct sum of representations), but the converse may not hold, e.g. the two-dimensional representation of the real numbers acting by upper triangular unipotent matrices is indecomposable but reducible.
A representation is called semisimple or completely reducible if it can be written as a direct sum of irreducible representations. This is analogous to the ...
The space of complex-valued class functions of a finite group G has a natural inner product: , := | | () ¯ where () ¯ denotes the complex conjugate of the value of on g.With respect to this inner product, the irreducible characters form an orthonormal basis for the space of class functions, and this yields the orthogonality relation for the rows of the character table:
The irreducible representation for the C-O stretching vibration is A 1g + E g + T 1u. Of these, only T 1u is IR active. B 2 H 6 has D 2h molecular symmetry. The terminal B-H stretching vibrations which are active in IR are B 2u and B 3u. Diborane. Fac-Mo(CO) 3 (CH 3 CH 2 CN) 3, has C 3v geometry. The irreducible representation for the C-O ...
For n = 3 the obvious analogue of the (n − 1)-dimensional representation is reducible – the permutation representation coincides with the regular representation, and thus breaks up into the three one-dimensional representations, as A 3 ≅ C 3 is abelian; see the discrete Fourier transform for representation theory of cyclic groups.
Let V be a representation of a group G; or more generally, let V be a vector space with a set of linear endomorphisms acting on it. In general, a vector space acted on by a set of linear endomorphisms is said to be simple (or irreducible) if the only invariant subspaces for those operators are zero and the vector space itself; a semisimple representation then is a direct sum of simple ...