enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Given the above general parametrization of the hyperbola in Cartesian coordinates, the eccentricity can be found using the formula in Conic section#Eccentricity in terms of coefficients. The center ( x c , y c ) {\displaystyle (x_{c},y_{c})} of the hyperbola may be determined from the formulae

  3. Hyperbolic coordinates - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_coordinates

    Similarly, a given mass M of gas with changing volume will have variable density δ = M / V, and the ideal gas law may be written P = k T δ so that an isobaric process traces a hyperbola in the quadrant of absolute temperature and gas density. For hyperbolic coordinates in the theory of relativity see the History section.

  4. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    A ray through the unit hyperbola x 2 − y 2 = 1 at the point (cosh a, sinh a), where a is twice the area between the ray, the hyperbola, and the x-axis. For points on the hyperbola below the x-axis, the area is considered negative (see animated version with comparison with the trigonometric (circular) functions).

  5. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.

  6. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    The minor axis is the shortest diameter of an ellipse, and its half-length is the semi-minor axis (b), the same value b as in the standard equation below. By analogy, for a hyperbola the parameter b in the standard equation is also called the semi-minor axis. The following relations hold: [6] = =

  7. Coordinate systems for the hyperbolic plane - Wikipedia

    en.wikipedia.org/wiki/Coordinate_systems_for_the...

    The Poincaré half-plane model is closely related to a model of the hyperbolic plane in the quadrant Q = {(x,y): x > 0, y > 0}. For such a point the geometric mean = and the hyperbolic angle = ⁡ / produce a point (u,v) in the upper half-plane.

  8. Principal axis theorem - Wikipedia

    en.wikipedia.org/wiki/Principal_axis_theorem

    The equation is for an ellipse, since both eigenvalues are positive. (Otherwise, if one were positive and the other negative, it would be a hyperbola.) The principal axes are the lines spanned by the eigenvectors. The minimum and maximum distances to the origin can be read off the equation in diagonal form.

  9. Hyperbolic sector - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_sector

    A hyperbolic sector is a region of the Cartesian plane bounded by a hyperbola and two rays from the origin to it. For example, the two points (a, 1/a) and (b, 1/b) on the rectangular hyperbola xy = 1, or the corresponding region when this hyperbola is re-scaled and its orientation is altered by a rotation leaving the center at the origin, as with the unit hyperbola.