Search results
Results from the WOW.Com Content Network
A pressure prism is a way of visually describing the variation of hydrostatic pressure within a volume of fluid. When variables of fluid density , depth, gravity , and other forces such as atmospheric pressure are charted, the resulting figure somewhat resembles a prism .
h f = head loss in meters (water) over the length of pipe; L = length of pipe in meters; Q = volumetric flow rate, m 3 /s (cubic meters per second) C = pipe roughness coefficient; d = inside pipe diameter, m (meters) Note: pressure drop can be computed from head loss as h f × the unit weight of water (e.g., 9810 N/m 3 at 4 deg C)
6.228835459×10 9 imperial gallons Alternatively, 35.32 tmcft = 1 cubic kilometer (km 3 ) is the standard unit used by Central Water Commission of Government of India for reporting gross and effective storage capacities of dams in India in National Register of Large Dams (NRLD).
Some SI units of volume to scale and approximate corresponding mass of water To ease calculations, a unit of volume is equal to the volume occupied by a unit cube (with a side length of one). Because the volume occupies three dimensions, if the metre (m) is chosen as a unit of length, the corresponding unit of volume is the cubic metre (m 3 ).
Because they are used for domestic water measurement, piston meters, also known as rotary piston or semi-positive displacement meters, are the most common flow measurement devices in the UK and are used for almost all meter sizes up to and including 40 mm (1 + 1 ⁄ 2 in). The piston meter operates on the principle of a piston rotating within a ...
Bernoulli's principle can be used to calculate the lift force on an airfoil, if the behaviour of the fluid flow in the vicinity of the foil is known. For example, if the air flowing past the top surface of an aircraft wing is moving faster than the air flowing past the bottom surface, then Bernoulli's principle implies that the pressure on the ...
Since all gases have the same volume per mole at a given temperature and pressure far from their points of liquefaction and solidification (see Perfect gas), and air is about 1 / 5 oxygen (molecular mass 32) and 4 / 5 nitrogen (molecular mass 28), the density of any near-perfect gas relative to air can be obtained to a good ...
For example, the freezing point of water is 0 °C and 32 °F, and a 5 °C change is the same as a 9 °F change. Thus, to convert from units of Fahrenheit to units of Celsius, one subtracts 32 °F (the offset from the point of reference), divides by 9 °F and multiplies by 5 °C (scales by the ratio of units), and adds 0 °C (the offset from the ...