Search results
Results from the WOW.Com Content Network
This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). [1]
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known.
Let a random variable ξ be normally distributed and admit a decomposition as a sum ξ=ξ 1 +ξ 2 of two independent random variables. Then the summands ξ 1 and ξ 2 are normally distributed as well. A proof of Cramér's decomposition theorem uses the theory of entire functions.
As an example, the sum of two jointly normally distributed random variables, each with different means, will still have a normal distribution. On the other hand, a mixture density created as a mixture of two normal distributions with different means will have two peaks provided that the two means are far enough apart, showing that this ...
The density of the sum of two independent real-valued random variables equals the convolution of the density functions of the original variables. Thus, the density of the sum of m+n terms of a sequence of independent identically distributed variables equals the convolution of the densities of the sums of m terms and of n term.
The fact that two random variables and both have a normal distribution does not imply that the pair (,) has a joint normal distribution. A simple example is one in which X has a normal distribution with expected value 0 and variance 1, and = if | | > and = if | | <, where >. There are similar counterexamples for more than two random variables.
In probability theory, an exponentially modified Gaussian distribution (EMG, also known as exGaussian distribution) describes the sum of independent normal and exponential random variables. An exGaussian random variable Z may be expressed as Z = X + Y, where X and Y are independent, X is Gaussian with mean μ and variance σ 2, and Y is ...