Search results
Results from the WOW.Com Content Network
Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from the genome. The related nucleotide excision repair pathway repairs
The XRCC1 protein does not have enzymatic activity, but acts as a scaffolding protein that interacts with multiple repair enzymes. The scaffolding allows these repair enzymes to then carry out their enzymatic steps in repairing DNA. XRCC1 is involved in single-strand break repair, base excision repair and nucleotide excision repair. [6]
Nucleotide excision repair is a DNA repair mechanism. [2] DNA damage occurs constantly because of chemicals (e.g. intercalating agents), radiation and other mutagens. Three excision repair pathways exist to repair single stranded DNA damage: Nucleotide excision repair (NER), base excision repair (BER), and DNA mismatch repair (MMR).
Base excision repair is the mechanism by which damaged bases in DNA are removed and replaced. DNA glycosylases catalyze the first step of this process. They remove the damaged nitrogenous base while leaving the sugar-phosphate backbone intact, creating an apurinic/apyrimidinic site, commonly referred to as an AP site.
Base excision repair (BER): damaged single bases or nucleotides are most commonly repaired by removing the base or the nucleotide involved and then inserting the correct base or nucleotide. In base excision repair, a glycosylase [ 18 ] enzyme removes the damaged base from the DNA by cleaving the bond between the base and the deoxyribose.
Enzymes, namely DNA glycosylases, also commonly create AP sites, as part of the base excision repair pathway. In a given mammalian cell, 5000–10,000 apurinic sites are estimated to form per day. Apyrimidinic sites form at a rate roughly 20 times slower, with estimates at around 500 formation events per day, per cell.
DNA can be damaged by ultraviolet radiation, toxins, radioactive substances, and reactive biochemical intermediates like free radicals.The ERCC6 protein is involved in repairing the genome when specific genes undergoing transcription (dubbed active genes) are inoperative; as such, ERCC6 serves as a transcription-coupled excision repair protein, being one of the fundamental enzymes in active ...
2072 50505 Ensembl ENSG00000175595 ENSMUSG00000022545 UniProt Q92889 Q9QZD4 RefSeq (mRNA) NM_005236 NM_015769 RefSeq (protein) NP_005227 NP_056584 Location (UCSC) Chr 16: 13.92 – 13.95 Mb Chr 16: 12.93 – 12.97 Mb PubMed search Wikidata View/Edit Human View/Edit Mouse ERCC4 is a protein designated as DNA repair endonuclease XPF that in humans is encoded by the ERCC4 gene. Together with ...