Search results
Results from the WOW.Com Content Network
The electric motor exploits an important effect of electromagnetism: a current through a magnetic field experiences a force at right angles to both the field and current. This relationship between magnetic fields and currents is extremely important, for it led to Michael Faraday's invention of the electric motor in 1821.
The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism , Ørsted's law , also spelled Oersted's law , is the physical law stating that an electric current induces a magnetic field .
The ampere is an SI base unit and electric current is a base quantity in the International System of Quantities (ISQ). [4]: 15 Electric current is also known as amperage and is measured using a device called an ammeter. [2]: 788 Electric currents create magnetic fields, which are used in motors, generators, inductors, and transformers.
The usual waveform of alternating current in most electric power circuits is a sine wave, whose positive half-period corresponds with positive direction of the current and vice versa (the full period is called a cycle). "Alternating current" most commonly refers to power distribution, but a wide range of other applications are technically ...
An electrochemical cell is a device that produces an electric current from energy released by a spontaneous redox reaction. This kind of cell includes the Galvanic cell or Voltaic cell, named after Luigi Galvani and Alessandro Volta, both scientists who conducted experiments on chemical reactions and electric current during the late 18th century.
When the electric current in a loop of wire changes, the changing current creates a changing magnetic field. A second wire in reach of this magnetic field will experience this change in magnetic field as a change in its coupled magnetic flux, . Therefore, an electromotive force is set up in the second loop called the induced emf or transformer emf.
As the electric field is irrotational, it is possible to express the electric field as the gradient of a scalar function, , called the electrostatic potential (also known as the voltage). An electric field, E {\displaystyle E} , points from regions of high electric potential to regions of low electric potential, expressed mathematically as
Skin effect — Tendency of charges to distribute at the surface of a conductor, when an alternating current passes through it. Static electricity — Class of phenomena involving the imbalanced charge present on an object, typically referring to charge with voltages of sufficient magnitude to produce visible attraction (e.g., static cling ...