Search results
Results from the WOW.Com Content Network
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions). Objects studied in discrete mathematics include integers, graphs, and statements in logic.
A path graph or linear graph of order n ≥ 2 is a graph in which the vertices can be listed in an order v 1, v 2, …, v n such that the edges are the {v i, v i+1} where i = 1, 2, …, n − 1. Path graphs can be characterized as connected graphs in which the degree of all but two vertices is 2 and the degree of the two remaining vertices is 1.
This involves formulating discrete operators on graphs which are analogous to differential operators in calculus, such as graph Laplacians (or discrete Laplace operators) as discrete versions of the Laplacian, and using these operators to formulate differential equations, difference equations, or variational models on graphs which can be ...
In mathematics, the discrete exterior calculus (DEC) is the extension of the exterior calculus to discrete spaces including graphs, finite element meshes, and lately also general polygonal meshes [1] (non-flat and non-convex). DEC methods have proved to be very powerful in improving and analyzing finite element methods: for instance, DEC-based ...
A directed graph or digraph is a graph in which edges have orientations. In one restricted but very common sense of the term, [5] a directed graph is an ordered pair = (,) comprising: , a set of vertices (also called nodes or points);
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]
In applied mathematics, lambda-connectedness (or λ-connectedness) deals with partial connectivity for a discrete space. Assume that a function on a discrete space (usually a graph) is given. A degree of connectivity (connectedness) will be defined to measure the connectedness of the space with respect to the function.
The mass of an object of known density that varies incrementally, the moment of inertia of such objects, as well as the total energy of an object within a discrete conservative field can be found by the use of discrete calculus. An example of the use of discrete calculus in mechanics is Newton's second law of motion: historically stated it ...