enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    [39] [40] The factorial number system is a mixed radix notation for numbers in which the place values of each digit are factorials. [ 41 ] Factorials are used extensively in probability theory , for instance in the Poisson distribution [ 42 ] and in the probabilities of random permutations . [ 43 ]

  3. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  4. Multiplicative partitions of factorials - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_partitions...

    Multiplicative partitions of factorials are expressions of values of the factorial function as products of powers of prime numbers. They have been studied by Paul Erdős and others. [1] [2] [3] The factorial of a positive integer is a product of decreasing integer factors, which can in turn be factored into prime numbers.

  5. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The falling factorial can be extended to real values of using the gamma function provided and + are real numbers that are not negative integers: = (+) (+) , and so can the rising factorial: = (+) . Calculus

  6. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    This is an example of an asymptotic expansion. It is not a convergent series ; for any particular value of n {\displaystyle n} there are only so many terms of the series that improve accuracy, after which accuracy worsens.

  7. Brocard's problem - Wikipedia

    en.wikipedia.org/wiki/Brocard's_problem

    Brocard's problem is a problem in mathematics that seeks integer values of such that ! + is a perfect square, where ! is the factorial. Only three values of n {\displaystyle n} are known — 4, 5, 7 — and it is not known whether there are any more.

  8. Aliasing (factorial experiments) - Wikipedia

    en.wikipedia.org/wiki/Aliasing_(factorial...

    In a fractional factorial experiment, the contrast vectors belonging to a given effect are restricted to the treatment combinations in the fraction. Thus, in the half-fraction {11, 12, 13} in the 2 × 3 example, the three effects may be represented by the column vectors in the following table:

  9. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    The ordinary factorial, when extended to the gamma function, has a pole at each negative integer, preventing the factorial from being defined at these numbers. However, the double factorial of odd numbers may be extended to any negative odd integer argument by inverting its recurrence relation!! = ()!! to give !! = (+)!! +.