enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    Weight normalization (WeightNorm) [18] is a technique inspired by BatchNorm that normalizes weight matrices in a neural network, rather than its activations. One example is spectral normalization , which divides weight matrices by their spectral norm .

  3. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    In a neural network, batch normalization is achieved through a normalization step that fixes the means and variances of each layer's inputs. Ideally, the normalization would be conducted over the entire training set, but to use this step jointly with stochastic optimization methods, it is impractical to use the global information.

  4. Flow-based generative model - Wikipedia

    en.wikipedia.org/wiki/Flow-based_generative_model

    A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.

  5. Lattice Boltzmann methods - Wikipedia

    en.wikipedia.org/wiki/Lattice_Boltzmann_methods

    A different interpretation of the lattice Boltzmann equation is that of a discrete-velocity Boltzmann equation. The numerical methods of solution of the system of partial differential equations then give rise to a discrete map, which can be interpreted as the propagation and collision of fictitious particles.

  6. Neural network Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Neural_network_Gaussian...

    The parameters of this network have a prior distribution (), which consists of an isotropic Gaussian for each weight and bias, with the variance of the weights scaled inversely with layer width. This network is illustrated in the figure to the right, and described by the following set of equations:

  7. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    Weight initialization [ edit ] Kumar suggested that the distribution of initial weights should vary according to activation function used and proposed to initialize the weights in networks with the logistic activation function using a Gaussian distribution with a zero mean and a standard deviation of 3.6/sqrt(N) , where N is the number of ...

  8. Multiplicative weight update method - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_Weight...

    In the first round, all experts’ opinions have the same weight. The decision maker will make the first decision based on the majority of the experts' prediction. Then, in each successive round, the decision maker will repeatedly update the weight of each expert's opinion depending on the correctness of his prior predictions.

  9. Capsule neural network - Wikipedia

    en.wikipedia.org/wiki/Capsule_neural_network

    For each possible parent, each child computes a prediction vector by multiplying its output by a weight matrix (trained by backpropagation). [3] Next the output of the parent is computed as the scalar product of a prediction with a coefficient representing the probability that this child belongs to that parent. A child whose predictions are ...