Search results
Results from the WOW.Com Content Network
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on .
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
is constant-recursive because it satisfies the linear recurrence = +: each number in the sequence is the sum of the previous two. [2] Other examples include the power of two sequence ,,,,, …, where each number is the sum of twice the previous number, and the square number sequence ,,,,, ….
A sequence () is called hypergeometric if the ratio of two consecutive terms is a rational function in , i.e. (+) / (). This is the case if and only if the sequence is the solution of a first-order recurrence equation with polynomial coefficients.
That is, after two starting values, each number is the sum of the two preceding numbers. The Fibonacci sequence has been studied extensively and generalized in many ways, for example, by starting with other numbers than 0 and 1, by adding more than two numbers to generate the next number, or by adding objects other than numbers.
In mathematics, the Lucas sequences (,) and (,) are certain constant-recursive integer sequences that satisfy the recurrence relation = where and are fixed integers.Any sequence satisfying this recurrence relation can be represented as a linear combination of the Lucas sequences (,) and (,).
The first Hofstadter sequences were described by Douglas Richard Hofstadter in his book Gödel, Escher, Bach.In order of their presentation in chapter III on figures and background (Figure-Figure sequence) and chapter V on recursive structures and processes (remaining sequences), these sequences are:
Historic recurrence is the repetition of similar events in history. [a] [b] The concept of historic recurrence has variously been applied to overall human history (e.g., to the rises and falls of empires), to repetitive patterns in the history of a given polity, and to any two specific events which bear a striking similarity. [4]