enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  3. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:

  4. Limits of integration - Wikipedia

    en.wikipedia.org/wiki/Limits_of_integration

    In Integration by substitution, the limits of integration will change due to the new function being integrated. With the function that is being derived, a {\displaystyle a} and b {\displaystyle b} are solved for f ( u ) {\displaystyle f(u)} .

  5. AOL Video - Serving the best video content from AOL and ...

    www.aol.com/video/view/how-to-solve-a-u...

    The AOL.com video experience serves up the best video content from AOL and around the web, curating informative and entertaining snackable videos.

  6. Tangent half-angle substitution - Wikipedia

    en.wikipedia.org/.../Tangent_half-angle_substitution

    The substitution is described in most integral calculus textbooks since the late 19th century, usually without any special name. [5] It is known in Russia as the universal trigonometric substitution, [6] and also known by variant names such as half-tangent substitution or half-angle substitution.

  7. Euler substitution - Wikipedia

    en.wikipedia.org/wiki/Euler_substitution

    Euler substitution is a method for evaluating integrals of the form (, + +), where is a rational function of and + +. In such cases, the integrand can be changed to a rational function by using the substitutions of Euler.

  8. 3 Winter Sleep Problems & How to Fix Them - AOL

    www.aol.com/3-winter-sleep-problems-fix...

    Winter brings less daylight and colder temperatures, which can disrupt sleep. Seasonal Affective Disorder (SAD) is more common in winter due to the lack of sunlight, causing sleep disturbances.

  9. Integral of the secant function - Wikipedia

    en.wikipedia.org/wiki/Integral_of_the_secant...

    A standard method of evaluating the secant integral presented in various references involves multiplying the numerator and denominator by sec θ + tan θ and then using the substitution u = sec θ + tan θ. This substitution can be obtained from the derivatives of secant and tangent added together, which have secant as a common factor. [6]