Search results
Results from the WOW.Com Content Network
Freivalds' algorithm (named after Rūsiņš Mārtiņš Freivalds) is a probabilistic randomized algorithm used to verify matrix multiplication. Given three n × n matrices A {\displaystyle A} , B {\displaystyle B} , and C {\displaystyle C} , a general problem is to verify whether A × B = C {\displaystyle A\times B=C} .
In mathematics, Light's associativity test is a procedure invented by F. W. Light for testing whether a binary operation defined in a finite set by a Cayley multiplication table is associative. The naive procedure for verification of the associativity of a binary operation specified by a Cayley table, which compares the two products that can be ...
Nevertheless, it is seen as a usefully explicit method to introduce the idea of multiple-digit multiplications; and, in an age when most multiplication calculations are done using a calculator or a spreadsheet, it may in practice be the only multiplication algorithm that some students will ever need.
Verhoeff had the goal of finding a decimal code—one where the check digit is a single decimal digit—which detected all single-digit errors and all transpositions of adjacent digits. At the time, supposed proofs of the nonexistence [6] of these codes made base-11 codes popular, for example in the ISBN check digit.
Here, it is straightforward to verify closure, associativity, and inclusion of identity (the identity matrix) and inverses. However, matrix multiplication is not commutative, which shows that this group is non-abelian. Another fact worth noticing is that the integers under multiplication do not form a group—even if zero is excluded.
Booth's multiplication algorithm is a multiplication algorithm that multiplies two signed binary numbers in two's complement notation. The algorithm was invented by Andrew Donald Booth in 1950 while doing research on crystallography at Birkbeck College in Bloomsbury, London. [1] Booth's algorithm is of interest in the study of computer ...
The digital root of the result of this calculation is then compared with that of the result of the original calculation. If no mistake has been made in the calculations, these two digital roots must be the same. Examples in which casting-out-nines has been used to check addition, subtraction, multiplication, and division are given below.
Also there are differences between calculators in the way a given sequence of button presses is interpreted. The result can be: −1: If the subtraction button − is pressed after the multiplication ×, it is interpreted as a correction of the × rather than a minus sign, so that 4 − 5 is calculated.