Search results
Results from the WOW.Com Content Network
When translating memory timings into actual latency, it is important to note that timings are in units of clock cycles, which for double data rate memory is half the speed of the commonly quoted transfer rate. Without knowing the clock frequency it is impossible to state if one set of timings is "faster" than another.
The MRC is part of reference BIOS code, which relates to memory initialization in the BIOS. It includes information about memory settings, frequency, timing, driving and detailed operations of the memory controller. The MRC is written in a C-language code, which can be edited and compiled by board makers. It provides a space to develop advanced ...
With asynchronous DRAM, memory was accessed by a memory controller on the memory bus based on a set timing rather than a clock, and was separate from the system bus. [3] Synchronous DRAM , however, has a CAS latency that is dependent upon the clock rate.
The memory is divided into several equally sized but independent sections called banks, allowing the device to operate on a memory access command in each bank simultaneously and speed up access in an interleaved fashion. This allows SDRAMs to achieve greater concurrency and higher data transfer rates than asynchronous DRAMs could.
In most cases, there is a special optional procedure for accessing BIOS parameters, to view and potentially make changes in settings. It may be possible to control how the computer uses the memory SPD data—to choose settings, selectively modify memory timings, or possibly to completely override the SPD data (see overclocking).
Memory latency is the time (the latency) between initiating a request for a byte or word in memory until it is retrieved by a processor. If the data are not in the processor's cache, it takes longer to obtain them, as the processor will have to communicate with the external memory cells. Latency is therefore a fundamental measure of the speed ...
Dynamic random-access memory (dynamic RAM or DRAM) is a type of random-access semiconductor memory that stores each bit of data in a memory cell, usually consisting of a tiny capacitor and a transistor, both typically based on metal–oxide–semiconductor (MOS) technology. While most DRAM memory cell designs use a capacitor and transistor ...
Along with memory latency timings, memory dividers are extensively used in overclocking memory subsystems to find stable, working memory states at higher FSB frequencies. The ratio between DRAM and FSB is commonly referred to as "DRAM:FSB ratio". Memory dividers are only applicable to those chipsets in which memory speed is dependent on FSB speeds.