Search results
Results from the WOW.Com Content Network
The appearance of regular icosahedron can be found in nature, such as the virus with icosahedral-shaped shells and radiolarians. Other applications of the regular icosahedron are the usage of its net in cartography, twenty-sided dice that may have been found in ancient times and role-playing games.
The convex regular icosahedron is usually referred to simply as the regular icosahedron, one of the five regular Platonic solids, and is represented by its Schläfli symbol {3, 5}, containing 20 triangular faces, with 5 faces meeting around each vertex. Its dual polyhedron is the regular dodecahedron {5, 3} having three regular pentagonal faces ...
The concept of "net force" comes into play when you look at the total effect of all of these forces on the body. However, the net force alone may not necessarily preserve the motion of the body. This is because, besides the net force, the 'torque' or rotational effect associated with these forces also matters. The net force must be applied at ...
Convex regular icosahedron. Let P and Q be combinatorially equivalent 3-dimensional convex polytopes; that is, they are convex polytopes with isomorphic face lattices. Suppose further that each pair of corresponding faces from P and Q are congruent to each other, i.e. equal up to a rigid motion. Then P and Q are themselves congruent.
Three members of the set can be deltahedra, that is, constructed entirely of equilateral triangles: the gyroelongated square bipyramid, a Johnson solid; the icosahedron, a Platonic solid; and the gyroelongated triangular bipyramid if it is made with equilateral triangles, but because it has coplanar faces is not strictly convex.
Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± 1 / φ ) and cyclic permutations of these coordinates.
Force applied to any pair of parallel long edges, to move them closer together or farther apart, is transferred automatically to stretch all the short edges uniformly, shrinking the polyhedron from its medium-sized Jessen's icosahedron toward the smaller octahedron, or expanding it toward the larger regular icosahedron and still larger ...
Regular icosahedron and its non-convex variant, which differs from Jessen's icosahedron in having different vertex positions and non-right-angled dihedrals. A similar shape can be formed by keeping the vertices of a regular icosahedron in their original positions and replacing certain pairs of equilateral triangles by pairs of isosceles triangles.