Search results
Results from the WOW.Com Content Network
In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space.
A mixture of equal amounts of each enantiomer, a racemic mixture or a racemate, does not rotate light. [7] [8] [9] Stereoisomers include both enantiomers and diastereomers. Diastereomers, like enantiomers, share the same molecular formula and are also nonsuperposable onto each other; however, they are not mirror images of each other. [10]
They usually differ in physical characteristics as well as chemical properties. If two molecules with more than one chiral centre differ in one or more (but not all) centres, they are diastereomers. All stereoisomers that are not enantiomers are diastereomers. Diastereomerism also exists in alkenes.
Stereoisomers have the same atoms or isotopes connected by bonds of the same type, but differ in the relative positions of those atoms in space. Two broad types of stereoisomers exist, enantiomes, and diastereomers. Enantiomers have identical physical properties but diastereomers do not. [7]
Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.
A chiral molecule or ion exists in two stereoisomers that are mirror images of each other, [5] called enantiomers; they are often distinguished as either "right-handed" or "left-handed" by their absolute configuration or some other criterion. The two enantiomers have the same chemical properties, except when reacting with other chiral compounds.
Two enantiomers of a generic amino acid at the stereocenter. In stereochemistry, a stereocenter of a molecule is an atom (center), axis or plane that is the focus of stereoisomerism; that is, when having at least three different groups bound to the stereocenter, interchanging any two different groups creates a new stereoisomer.
Enantiomers of a compound with more than one stereocenter are also diastereomers of the other stereoisomers of that compound that are not their mirror image (that is, excluding the opposing enantiomer). Diastereomers have different physical properties (unlike most aspects of enantiomers) and often different chemical reactivity.