enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Y-intercept - Wikipedia

    en.wikipedia.org/wiki/Y-intercept

    The -intercept of () is indicated by the red dot at (=, =). In analytic geometry , using the common convention that the horizontal axis represents a variable x {\displaystyle x} and the vertical axis represents a variable y {\displaystyle y} , a y {\displaystyle y} -intercept or vertical intercept is a point where the graph of a function or ...

  3. Quadratic equation - Wikipedia

    en.wikipedia.org/wiki/Quadratic_equation

    The y-intercept is located at the point (0, c). The solutions of the quadratic equation ax 2 + bx + c = 0 correspond to the roots of the function f(x) = ax 2 + bx + c, since they are the values of x for which f(x) = 0.

  4. Quadratic formula - Wikipedia

    en.wikipedia.org/wiki/Quadratic_formula

    A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating ⁠ ⁠ and ⁠ ⁠, which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]

  5. Curve sketching - Wikipedia

    en.wikipedia.org/wiki/Curve_sketching

    Similarly, the y intercepts are found by setting x equal to 0 in the equation of the curve and solving for y. Determine the symmetry of the curve. If the exponent of x is always even in the equation of the curve then the y-axis is an axis of symmetry for the curve.

  6. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form: = + where: m is the slope or gradient of the line. b is the y-intercept of the line. x is the independent variable of the function y = f(x).

  7. Quadratic function - Wikipedia

    en.wikipedia.org/wiki/Quadratic_function

    Roots and y-intercept in red; Vertex and axis of symmetry in blue; Focus and directrix in pink; Visualisation of the complex roots of y = ax 2 + bx + c: the parabola is rotated 180° about its vertex (orange). Its x-intercepts are rotated 90° around their mid-point, and the Cartesian plane is interpreted as the complex plane (green). [3

  8. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Polynomial graphs are analyzed in calculus using intercepts, slopes, concavity, and end behavior. ... A matrix polynomial equation is an equality between two matrix ...

  9. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Line–line_intersection

    Suppose that two lines have the equations y = ax + c and y = bx + d where a and b are the slopes (gradients) of the lines and where c and d are the y-intercepts of the lines. At the point where the two lines intersect (if they do), both y coordinates will be the same, hence the following equality: + = +.