enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Linear span - Wikipedia

    en.wikipedia.org/wiki/Linear_span

    In mathematics, the linear span (also called the linear hull [1] or just span) of a set of elements of a vector space is the smallest linear subspace of that contains . It is the set of all finite linear combinations of the elements of S , [ 2 ] and the intersection of all linear subspaces that contain S . {\displaystyle S.}

  3. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  4. Vector calculus - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus

    Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.

  5. Gram–Schmidt process - Wikipedia

    en.wikipedia.org/wiki/Gram–Schmidt_process

    The vector projection of a vector on a nonzero vector is defined as [note 1] ⁡ = , , , where , denotes the inner product of the vectors and . This means that proj u ⁡ ( v ) {\displaystyle \operatorname {proj} _{\mathbf {u} }(\mathbf {v} )} is the orthogonal projection of v {\displaystyle \mathbf {v} } onto the line spanned by u ...

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  7. Vector space - Wikipedia

    en.wikipedia.org/wiki/Vector_space

    Linear span Given a subset G of a vector space V, the linear span or simply the span of G is the smallest linear subspace of V that contains G, in the sense that it is the intersection of all linear subspaces that contain G. The span of G is also the set of all linear combinations of elements of G.

  8. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  9. Linear subspace - Wikipedia

    en.wikipedia.org/wiki/Linear_subspace

    Again take the field to be R, but now let the vector space V be the set R R of all functions from R to R. Let C(R) be the subset consisting of continuous functions. Then C(R) is a subspace of R R. Proof: We know from calculus that 0 ∈ C(R) ⊂ R R. We know from calculus that the sum of continuous functions is continuous.