Search results
Results from the WOW.Com Content Network
An infimum of a set is always and only defined relative to a superset of the set in question. For example, there is no infimum of the positive real numbers inside the positive real numbers (as their own superset), nor any infimum of the positive real numbers inside the complex numbers with positive real part.
The supremum of B is then equal to the infimum of X: since each element of X is an upper bound of B, sup B is smaller than all elements of X, i.e. sup B is in B. It is the greatest element of B and hence the infimum of X. In a dual way, the existence of all infima implies the existence of all suprema.
This concept is also called supremum or join, and for a set S one writes sup(S) or for its least upper bound. Conversely, the greatest lower bound is known as infimum or meet and denoted inf(S) or . These concepts play an important role in many applications of order theory.
The infimum of two elements may be written as inf{x,y} or x ∧ y. If the set X is finite, one speaks of a finite infimum. The dual notion is called supremum. Interval. For two elements a, b of a partially ordered set P, the interval [a,b] is the subset {x in P | a ≤ x ≤ b} of P. If a ≤ b does not hold the interval will be empty. Interval ...
In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers.Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the ...
In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X .
For example, in lattice theory, one is interested in orders where all finite non-empty sets have both a least upper bound and a greatest lower bound. In domain theory, on the other hand, one focuses on partially ordered sets in which every directed subset has a supremum. Complete lattices and orders with a least element (the "empty supremum ...
In mathematics, specifically in order theory and functional analysis, a subset of an ordered vector space is said to be order complete in if for every non-empty subset of that is order bounded in (meaning contained in an interval, which is a set of the form [,]:= {:}, for some ,), the supremum ' and the infimum both exist and are elements of .