Search results
Results from the WOW.Com Content Network
Dictionary < ' TKey, ' TValue > type (which is implemented as a hash table), which is the primary associative array type used in C# and Visual Basic. This type may be preferred when writing code that is intended to operate with other languages on the .NET Framework, or when the performance characteristics of a hash table are preferred over ...
The expression which denotes the collection to loop over is evaluated in list-context, but not flattened by default, and each item of the resulting list is, in turn, aliased to the loop variable(s). List literal example:
Some compiled languages such as Ada and Fortran, and some scripting languages such as IDL, MATLAB, and S-Lang, have native support for vectorized operations on arrays. For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b
Examples of reference types are object (the ultimate base class for all other C# classes), System. String (a string of Unicode characters), and System. Array (a base class for all C# arrays). Both type categories are extensible with user-defined types.
The most frequently used general-purpose implementation of an associative array is with a hash table: an array combined with a hash function that separates each key into a separate "bucket" of the array. The basic idea behind a hash table is that accessing an element of an array via its index is a simple, constant-time operation.
Single-value containers store each object independently. Objects may be accessed directly, by a language loop construct (e.g. for loop) or with an iterator. An associative container uses an associative array, map, or dictionary, composed of key-value pairs, such that each key appears at most once in the container. The key is used to find the ...
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
For example, a stack has push/pop operations that follow a Last-In-First-Out rule, and can be concretely implemented using either a list or an array. Another example is a set which stores values, without any particular order, and no repeated values. Values themselves are not retrieved from sets; rather, one tests a value for membership to ...