Search results
Results from the WOW.Com Content Network
Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.
These models are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words. Word2vec takes as its input a large corpus of text and produces a vector space , typically of several hundred dimensions , with each unique word in the corpus being assigned a corresponding vector in the space.
Key topics include machine learning, deep learning, natural language processing and computer vision. Many universities now offer specialized programs in AI engineering at both the undergraduate and postgraduate levels, including hands-on labs, project-based learning, and interdisciplinary courses that bridge AI theory with engineering practices ...
Deep learning software by name. Software Creator Initial release Software license [a] Open source Platform Written in Interface OpenMP support OpenCL support
TensorFlow is a software library for machine learning and artificial intelligence. It can be used across a range of tasks, but is used mainly for training and inference of neural networks . [ 3 ] [ 4 ] It is one of the most popular deep learning frameworks, alongside others such as PyTorch and PaddlePaddle.
In deep learning, fine-tuning is an approach to transfer learning in which the parameters of a pre-trained neural network model are trained on new data. [1] Fine-tuning can be done on the entire neural network, or on only a subset of its layers, in which case the layers that are not being fine-tuned are "frozen" (i.e., not changed during backpropagation). [2]
Natural language processing (NLP) is a subfield of computer science and especially artificial intelligence.It is primarily concerned with providing computers with the ability to process data encoded in natural language and is thus closely related to information retrieval, knowledge representation and computational linguistics, a subfield of linguistics.
Deep semantic parsing, also known as compositional semantic parsing, is concerned with producing precise meaning representations of utterances that can contain significant compositionality. [23] Shallow semantic parsers can parse utterances like "show me flights from Boston to Dallas" by classifying the intent as "list flights", and filling ...