Search results
Results from the WOW.Com Content Network
In quantum mechanics, the position operator is the operator that corresponds to the position observable of a particle. When the position operator is considered with a wide enough domain (e.g. the space of tempered distributions), its eigenvalues are the possible position vectors of the particle. [1]
The Newton–Wigner position operators x 1, x 2, x 3, are the premier notion of position in relativistic quantum mechanics of a single particle. They enjoy the same commutation relations with the 3 space momentum operators and transform under rotations in the same way as the x, y, z in ordinary QM.
The momentum operator can be described as a symmetric (i.e. Hermitian), unbounded operator acting on a dense subspace of the quantum state space. If the operator acts on a (normalizable) quantum state then the operator is self-adjoint. In physics the term Hermitian often refers to both symmetric and self-adjoint operators. [7] [8]
This quantum state can be represented as a superposition of basis states. In principle one is free to choose the set of basis states, as long as they span the state space. If one chooses the (generalized) eigenfunctions of the position operator as a set of basis functions, one speaks of a state as a wave function ψ(r) in position space.
The mathematical formulation of quantum mechanics (QM) is built upon the concept of an operator. Physical pure states in quantum mechanics are represented as unit-norm vectors (probabilities are normalized to one) in a special complex Hilbert space. Time evolution in this vector space is given by the application of the evolution operator.
In quantum mechanics, a complete set of commuting observables (CSCO) is a set of commuting operators whose common eigenvectors can be used as a basis to express any quantum state. In the case of operators with discrete spectra, a CSCO is a set of commuting observables whose simultaneous eigenspaces span the Hilbert space and are linearly ...
The phase-space formulation is a formulation of quantum mechanics that places the position and momentum variables on equal footing in phase space.The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution (instead of a wave function, state vector, or density matrix) and operator multiplication is replaced by a star product.
Classically we have for the angular momentum =. This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector = (,,) about the -axis to ′ = (′, ′,) leaving unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):