enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokes' law - Wikipedia

    en.wikipedia.org/wiki/Stokes'_law

    If correctly selected, it reaches terminal velocity, which can be measured by the time it takes to pass two marks on the tube. Electronic sensing can be used for opaque fluids. Knowing the terminal velocity, the size and density of the sphere, and the density of the liquid, Stokes' law can be used to calculate the viscosity of the fluid. A ...

  3. Mean free path - Wikipedia

    en.wikipedia.org/wiki/Mean_free_path

    Note that different definitions of the molecular diameter, as well as different assumptions about the value of atmospheric pressure (100 vs 101.3 kPa) and room temperature (293.17 K vs 296.15 K or even 300 K) can lead to slightly different values of the mean free path.

  4. Knudsen number - Wikipedia

    en.wikipedia.org/wiki/Knudsen_number

    The Knudsen number is a dimensionless number defined as =, where = mean free path [L 1], = representative physical length scale [L 1].. The representative length scale considered, , may correspond to various physical traits of a system, but most commonly relates to a gap length over which thermal transport or mass transport occurs through a gas phase.

  5. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    Van der Waals based the equation on the idea that fluids are composed of discrete particles, which few scientists believed existed. However, the equation accurately predicted the behavior of a fluid around its critical point, which had been discovered a few years earlier. Its qualitative and quantitative agreement with experiments ultimately ...

  6. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    For a sphere in a fluid, the characteristic length-scale is the diameter of the sphere and the characteristic velocity is that of the sphere relative to the fluid some distance away from the sphere, such that the motion of the sphere does not disturb that reference parcel of fluid. The density and viscosity are those belonging to the fluid. [23]

  7. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    If mass density is ρ, the mass of the parcel is density multiplied by its volume m = ρA dx. The change in pressure over distance d x is d p and flow velocity v = ⁠ d x / d t ⁠ . Apply Newton's second law of motion (force = mass × acceleration) and recognizing that the effective force on the parcel of fluid is − A d p .

  8. Einstein relation (kinetic theory) - Wikipedia

    en.wikipedia.org/wiki/Einstein_relation_(kinetic...

    In a semiconductor with an arbitrary density of states, i.e. a relation of the form = between the density of holes or electrons and the corresponding quasi Fermi level (or electrochemical potential) , the Einstein relation is [11] [12] =, where is the electrical mobility (see § Proof of the general case for a proof of this relation).

  9. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure. From Bernoulli's law, dynamic pressure is given by

  1. Related searches relationship between pressure and density in a sphere based on mass and diameter

    how to calculate a spherehow to calculate sphere flow