enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kurtosis - Wikipedia

    en.wikipedia.org/wiki/Kurtosis

    In probability theory and statistics, kurtosis (from Greek: κυρτός, kyrtos or kurtos, meaning "curved, arching") refers to the degree of “tailedness” in the probability distribution of a real-valued random variable. Similar to skewness, kurtosis provides insight into specific characteristics of a distribution. Various methods exist ...

  3. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    In probability theory and statistics, the logistic distribution is a continuous probability distribution. Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis).

  4. Shape of a probability distribution - Wikipedia

    en.wikipedia.org/wiki/Shape_of_a_probability...

    Considerations of the shape of a distribution arise in statistical data analysis, where simple quantitative descriptive statistics and plotting techniques such as histograms can lead on to the selection of a particular family of distributions for modelling purposes. The normal distribution, often called the "bell curve" Exponential distribution

  5. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    The plot of excess kurtosis as a function of the variance and the mean shows that the minimum value of the excess kurtosis (−2, which is the minimum possible value for excess kurtosis for any distribution) is intimately coupled with the maximum value of variance (1/4) and the symmetry condition: the mean occurring at the midpoint (μ = 1/2).

  6. L-moment - Wikipedia

    en.wikipedia.org/wiki/L-moment

    One disadvantage of L-moment ratios for estimation is their typically smaller sensitivity. For instance, the Laplace distribution has a kurtosis of 6 and weak exponential tails, but a larger 4th L-moment ratio than e.g. the student-t distribution with d.f.=3, which has an infinite kurtosis and much heavier tails.

  7. Multimodal distribution - Wikipedia

    en.wikipedia.org/wiki/Multimodal_distribution

    The kurtosis is here defined to be the standardised fourth moment around the mean. The value of b lies between 0 and 1. [26] The logic behind this coefficient is that a bimodal distribution with light tails will have very low kurtosis, an asymmetric character, or both – all of which increase this coefficient. The formula for a finite sample ...

  8. Geometric distribution - Wikipedia

    en.wikipedia.org/wiki/Geometric_distribution

    [6]: 115 The excess kurtosis of a distribution is the difference between its kurtosis and the kurtosis of a normal distribution, . [10]: 217 Therefore, the excess kurtosis of the geometric distribution is +.

  9. Jarque–Bera test - Wikipedia

    en.wikipedia.org/wiki/Jarque–Bera_test

    In statistics, the Jarque–Bera test is a goodness-of-fit test of whether sample data have the skewness and kurtosis matching a normal distribution. The test is named after Carlos Jarque and Anil K. Bera. The test statistic is always nonnegative. If it is far from zero, it signals the data do not have a normal distribution.