enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    7.2 Example 2: polar-Cartesian transformation. ... If a function is differentiable at a point, its differential is given in coordinates by the Jacobian matrix.

  3. Conformal map - Wikipedia

    en.wikipedia.org/wiki/Conformal_map

    The conformal property may be described in terms of the Jacobian derivative matrix of a coordinate transformation. The transformation is conformal whenever the Jacobian at each point is a positive scalar times a rotation matrix (orthogonal with determinant one). Some authors define conformality to include orientation-reversing mappings whose ...

  4. List of common coordinate transformations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_coordinate...

    Let (x, y, z) be the standard Cartesian coordinates, and (ρ, θ, φ) the spherical coordinates, with θ the angle measured away from the +Z axis (as , see conventions in spherical coordinates). As φ has a range of 360° the same considerations as in polar (2 dimensional) coordinates apply whenever an arctangent of it is taken. θ has a range ...

  5. Pushforward (differential) - Wikipedia

    en.wikipedia.org/wiki/Pushforward_(differential)

    Thus the differential is a linear transformation, between tangent spaces, associated to the smooth map at each point. Therefore, in some chosen local coordinates, it is represented by the Jacobian matrix of the corresponding smooth map from to . In general, the differential need not be invertible.

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    In each local chart a Riemannian metric is given by smoothly assigning a 2×2 positive definite matrix to each point; when a different chart is taken, the matrix is transformed according to the Jacobian matrix of the coordinate change. The manifold then has the structure of a 2-dimensional Riemannian manifold.

  7. Tangent bundle - Wikipedia

    en.wikipedia.org/wiki/Tangent_bundle

    The transition functions on chart overlaps () are induced by the Jacobian matrices of the associated coordinate transformation and are therefore smooth maps between open subsets of . The tangent bundle is an example of a more general construction called a vector bundle (which is itself a specific kind of fiber bundle ).

  8. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.

  9. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    In geometry, curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian coordinates by using a transformation that is locally invertible (a one-to-one map) at each point. This means that one can convert a point given in a Cartesian ...