enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.

  3. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  4. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    [6] Ye and Tse [7] present a polynomial-time algorithm, which extends Karmarkar's algorithm from linear programming to convex quadratic programming. On a system with n variables and L input bits, their algorithm requires O(L n) iterations, each of which can be done using O(L n 3) arithmetic operations, for a total runtime complexity of O(L 2 n 4).

  5. Calculator Applications (UIL) - Wikipedia

    en.wikipedia.org/wiki/Calculator_Applications_(UIL)

    Calculator Applications is one of several academic events sanctioned by the University Interscholastic League (UIL) in Texas, US. It is also a competition held by the Texas Math and Science Coaches Association, using the same rules as the UIL. Calculator Applications is designed to test students' abilities to use general calculator functions.

  6. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    The test functions used to evaluate the algorithms for MOP were taken from Deb, [4] Binh et al. [5] and Binh. [6] The software developed by Deb can be downloaded, [7] which implements the NSGA-II procedure with GAs, or the program posted on Internet, [8] which implements the NSGA-II procedure with ES.

  7. Steffensen's method - Wikipedia

    en.wikipedia.org/wiki/Steffensen's_method

    Since the secant method can carry out twice as many steps in the same time as Steffensen's method, [b] in practical use the secant method actually converges faster than Steffensen's method, when both algorithms succeed: The secant method achieves a factor of about (1.6) 2 ≈ 2.6 times as many digits for every two steps (two function ...

  8. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Sequential quadratic programming: A Newton-based method for small-medium scale constrained problems. Some versions can handle large-dimensional problems. Interior point methods: This is a large class of methods for constrained optimization, some of which use only (sub)gradient information and others of which require the evaluation of Hessians.

  9. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    If the constrained problem has only equality constraints, the method of Lagrange multipliers can be used to convert it into an unconstrained problem whose number of variables is the original number of variables plus the original number of equality constraints. Alternatively, if the constraints are all equality constraints and are all linear ...