Search results
Results from the WOW.Com Content Network
Federated learning (also known as collaborative learning) is a machine learning technique focusing on settings in which multiple entities (often referred to as clients) collaboratively train a model while ensuring that their data remains decentralized. [1] This stands in contrast to machine learning settings in which data is centrally stored.
The term OLAP was created as a slight modification of the traditional database term online transaction processing (OLTP). [2] OLAP is part of the broader category of business intelligence, which also encompasses relational databases, report writing and data mining. [3]
Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).
An OLAP cube is a multi-dimensional array of data. [1] Online analytical processing (OLAP) [ 2 ] is a computer-based technique of analyzing data to look for insights. The term cube here refers to a multi-dimensional dataset, which is also sometimes called a hypercube if the number of dimensions is greater than three.
The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...
Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.
The following tables compare general and technical information for a number of online analytical processing (OLAP) servers. Please see the individual products articles for further information. Please see the individual products articles for further information.
Multimodal learning is a type of deep learning that integrates and processes multiple types of data, referred to as modalities, such as text, audio, images, or video.This integration allows for a more holistic understanding of complex data, improving model performance in tasks like visual question answering, cross-modal retrieval, [1] text-to-image generation, [2] aesthetic ranking, [3] and ...