enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross-entropy - Wikipedia

    en.wikipedia.org/wiki/Cross-entropy

    Cross-entropy can be used to define a loss function in machine learning and optimization. Mao, Mohri, and Zhong (2023) give an extensive analysis of the properties of the family of cross-entropy loss functions in machine learning, including theoretical learning guarantees and extensions to adversarial learning. [3]

  3. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    The standard softmax function is often used in the final layer of a neural network-based classifier. Such networks are commonly trained under a log loss (or cross-entropy) regime, giving a non-linear variant of multinomial logistic regression.

  4. Loss functions for classification - Wikipedia

    en.wikipedia.org/wiki/Loss_functions_for...

    The cross-entropy loss is closely related to the Kullback–Leibler divergence between the empirical distribution and the predicted distribution. The cross-entropy loss is ubiquitous in modern deep neural networks .

  5. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    Loss functions are implemented as sub-classes of Criterion, which has a similar interface to Module. It also has forward() and backward() methods for computing the loss and backpropagating gradients, respectively. Criteria are helpful to train neural network on classical tasks.

  6. Cross-entropy method - Wikipedia

    en.wikipedia.org/wiki/Cross-Entropy_Method

    The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: [1] Draw a sample from a probability distribution.

  7. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    The hinge loss is a convex function, so many of the usual convex optimizers used in machine learning can work with it. It is not differentiable , but has a subgradient with respect to model parameters w of a linear SVM with score function y = w ⋅ x {\displaystyle y=\mathbf {w} \cdot \mathbf {x} } that is given by

  8. Kullback–Leibler divergence - Wikipedia

    en.wikipedia.org/wiki/Kullback–Leibler_divergence

    The entropy () thus sets a minimum value for the cross-entropy (,), the expected number of bits required when using a code based on Q rather than P; and the Kullback–Leibler divergence therefore represents the expected number of extra bits that must be transmitted to identify a value x drawn from X, if a code is used corresponding to the ...

  9. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    Entropy (thermodynamics) Cross entropy – is a measure of the average number of bits needed to identify an event from a set of possibilities between two probability distributions; Entropy (arrow of time) Entropy encoding – a coding scheme that assigns codes to symbols so as to match code lengths with the probabilities of the symbols. Entropy ...