Search results
Results from the WOW.Com Content Network
In information theory, the cross-entropy between two probability distributions and , over the same underlying set of events, measures the average number of bits needed to identify an event drawn from the set when the coding scheme used for the set is optimized for an estimated probability distribution , rather than the true distribution .
A higher temperature results in a more uniform output distribution (i.e. with higher entropy; it is "more random"), while a lower temperature results in a sharper output distribution, with one value dominating. In some fields, the base is fixed, corresponding to a fixed scale, [d] while in others the parameter β (or T) is varied.
Entropy (thermodynamics) Cross entropy – is a measure of the average number of bits needed to identify an event from a set of possibilities between two probability distributions; Entropy (arrow of time) Entropy encoding – a coding scheme that assigns codes to symbols so as to match code lengths with the probabilities of the symbols. Entropy ...
The torch package also simplifies object-oriented programming and serialization by providing various convenience functions which are used throughout its packages. The torch.class(classname, parentclass) function can be used to create object factories ().
Here, [] is the kernel embedding of the proposed density and is an entropy-like quantity (e.g. Entropy, KL divergence, Bregman divergence). The distribution which solves this optimization may be interpreted as a compromise between fitting the empirical kernel means of the samples well, while still allocating a substantial portion of the ...
The cross-entropy (CE) method is a Monte Carlo method for importance sampling and optimization. It is applicable to both combinatorial and continuous problems, with either a static or noisy objective. The method approximates the optimal importance sampling estimator by repeating two phases: [1] Draw a sample from a probability distribution.
The entropy () thus sets a minimum value for the cross-entropy (,), the expected number of bits required when using a code based on Q rather than P; and the Kullback–Leibler divergence therefore represents the expected number of extra bits that must be transmitted to identify a value x drawn from X, if a code is used corresponding to the ...
where is the Kullback–Leibler divergence, and is the outer product distribution which assigns probability () to each (,).. Notice, as per property of the Kullback–Leibler divergence, that (;) is equal to zero precisely when the joint distribution coincides with the product of the marginals, i.e. when and are independent (and hence observing tells you nothing about ).