enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimension (data warehouse) - Wikipedia

    en.wikipedia.org/wiki/Dimension_(data_warehouse)

    As examples, date dimensions can be accurate to year, quarter, month or day and time dimensions can be accurate to hours, minutes or seconds. As a rule of thumb, time of day dimension should only be created if hierarchical groupings are needed or if there are meaningful textual descriptions for periods of time within the day (ex. “evening ...

  3. Early-arriving fact - Wikipedia

    en.wikipedia.org/wiki/Early-arriving_fact

    In the data warehouse practice of extract, transform, load (ETL), an early fact or early-arriving fact, [1] also known as late-arriving dimension or late-arriving data, [2] denotes the detection of a dimensional natural key during fact table source loading, prior to the assignment of a corresponding primary key or surrogate key in the dimension table.

  4. Slowly changing dimension - Wikipedia

    en.wikipedia.org/wiki/Slowly_changing_dimension

    In data management and data warehousing, a slowly changing dimension (SCD) is a dimension that stores data which, while generally stable, may change over time, often in an unpredictable manner. [1] This contrasts with a rapidly changing dimension , such as transactional parameters like customer ID, product ID, quantity, and price, which undergo ...

  5. Star schema - Wikipedia

    en.wikipedia.org/wiki/Star_schema

    Fact_Sales is the fact table and there are three dimension tables Dim_Date, Dim_Store and Dim_Product. Each dimension table has a primary key on its Id column, relating to one of the columns (viewed as rows in the example schema) of the Fact_Sales table's three-column (compound) primary key ( Date_Id , Store_Id , Product_Id ).

  6. Dimensional modeling - Wikipedia

    en.wikipedia.org/wiki/Dimensional_modeling

    Dimensions are the foundation of the fact table, and is where the data for the fact table is collected. Typically dimensions are nouns like date, store, inventory etc. These dimensions are where all the data is stored. For example, the date dimension could contain data such as year, month and weekday. Identify the facts

  7. Dimensional fact model - Wikipedia

    en.wikipedia.org/wiki/Dimensional_fact_model

    Data warehouses (DWs) are databases used by decision makers to analyze the status and the development of an organization. DWs are based on large amounts of data integrated from heterogeneous sources into multidimensional databases, and they are optimized for accessing data in a way that comes naturally to human analysts (e.g., OLAP applications).

  8. Degenerate dimension - Wikipedia

    en.wikipedia.org/wiki/Degenerate_dimension

    For example, the Oracle FAQ defines a degenerate dimension as a "data dimension that is stored in the fact table rather than a separate dimension table. This eliminates the need to join to a dimension table. You can use the data in the degenerate dimension to limit or 'slice and dice' your fact table measures." [3]

  9. Fact table - Wikipedia

    en.wikipedia.org/wiki/Fact_table

    Example of a star schema; the central table is the fact table. In data warehousing, a fact table consists of the measurements, metrics or facts of a business process. It is located at the center of a star schema or a snowflake schema surrounded by dimension tables. Where multiple fact tables are used, these are arranged as a fact constellation ...