Search results
Results from the WOW.Com Content Network
The secretary problem demonstrates a scenario involving optimal stopping theory [1] [2] that is studied extensively in the fields of applied probability, statistics, and decision theory. It is also known as the marriage problem , the sultan's dowry problem , the fussy suitor problem , the googol game , and the best choice problem .
The length of the grid's last line is given by the remainder. The key is written above the grid, and the ciphertext is written down the columns of the grid in the order given by the letters of the key. The plaintext appears on the rows. A partial decipherment of the above ciphertext, after writing in the first column: 6 3 2 4 1 5 . . . . E ...
ADTs were first proposed by Barbara Liskov and Stephen N. Zilles in 1974, as part of the development of the CLU language. [2] Algebraic specification was an important subject of research in CS around 1980 and almost a synonym for abstract data types at that time. [3] It has a mathematical foundation in universal algebra. [4]
The travelling purchaser problem, the vehicle routing problem and the ring star problem [1] are three generalizations of TSP. The decision version of the TSP (where given a length L , the task is to decide whether the graph has a tour whose length is at most L ) belongs to the class of NP-complete problems.
The MAX-SAT problem is OptP-complete, [1] and thus NP-hard (as a decision problem), since its solution easily leads to the solution of the boolean satisfiability problem, which is NP-complete. It is also difficult to find an approximate solution of the problem, that satisfies a number of clauses within a guaranteed approximation ratio of the ...
There is often only a small difference between a problem in P and an NP-complete problem. For example, the 3-satisfiability problem, a restriction of the Boolean satisfiability problem, remains NP-complete, whereas the slightly more restricted 2-satisfiability problem is in P (specifically, it is NL-complete), but the slightly more general max ...
Illustration of the dining philosophers problem. Each philosopher has a bowl of spaghetti and can reach two of the forks. In computer science, the dining philosophers problem is an example problem often used in concurrent algorithm design to illustrate synchronization issues and techniques for resolving them.
The baby-step giant-step algorithm could be used by an eavesdropper to derive the private key generated in the Diffie Hellman key exchange, when the modulus is a prime number that is not too large. If the modulus is not prime, the Pohlig–Hellman algorithm has a smaller algorithmic complexity, and potentially solves the same problem. [2]