enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    It is a popular algorithm for parameter estimation in machine learning. [ 2 ] [ 3 ] The algorithm's target problem is to minimize f ( x ) {\displaystyle f(\mathbf {x} )} over unconstrained values of the real-vector x {\displaystyle \mathbf {x} } where f {\displaystyle f} is a differentiable scalar function.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.

  5. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    The golden-section search is a technique for finding an extremum (minimum or maximum) of a function inside a specified interval. For a strictly unimodal function with an extremum inside the interval, it will find that extremum, while for an interval containing multiple extrema (possibly including the interval boundaries), it will converge to one of them.

  6. Multiway number partitioning - Wikipedia

    en.wikipedia.org/wiki/Multiway_number_partitioning

    The goal is to partition the jobs among the processors such that the makespan (the finish time of the last job) is minimized. Maximize the smallest sum. This objective corresponds to the application of fair item allocation , particularly the maximin share .

  7. Largest differencing method - Wikipedia

    en.wikipedia.org/wiki/Largest_differencing_method

    When there are at most 4 items, LDM returns the optimal partition. LDM always returns a partition in which the largest sum is at most 7/6 times the optimum. [4] This is tight when there are 5 or more items. [2] On random instances, this approximate algorithm performs much better than greedy number partitioning. However, it is still bad for ...

  8. Recursive partitioning - Wikipedia

    en.wikipedia.org/wiki/Recursive_partitioning

    Ensemble learning methods such as Random Forests help to overcome a common criticism of these methods – their vulnerability to overfitting of the data – by employing different algorithms and combining their output in some way. This article focuses on recursive partitioning for medical diagnostic tests, but the technique has far wider ...

  9. Maximum cut - Wikipedia

    en.wikipedia.org/wiki/Maximum_cut

    For a partition of V into subsets U and W, an edge xy is balanced if either s(xy) = + and x and y are in the same subset, or s(xy) = – and x and y are different subsets. BSP aims at finding a partition with the maximum number b(G) of balanced edges in G. The Edwards-ErdÅ‘s gives a lower bound on b(G) for every connected signed graph G.