Search results
Results from the WOW.Com Content Network
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [1]: 2 These data exist on an ordinal scale, one of four levels of measurement described by S. S. Stevens in 1946.
Ordinal regression turns up often in the social sciences, for example in the modeling of human levels of preference (on a scale from, say, 1–5 for "very poor" through "excellent"), as well as in information retrieval. In machine learning, ordinal regression may also be called ranking learning. [3] [a]
Scaling of data: One of the properties of the tests is the scale of the data, which can be interval-based, ordinal or nominal. [3] Nominal scale is also known as categorical. [6] Interval scale is also known as numerical. [6] When categorical data has only two possibilities, it is called binary or dichotomous. [1]
The ordinal scale places events in order, but there is no attempt to make the intervals of the scale equal in terms of some rule. Rank orders represent ordinal scales and are frequently used in research relating to qualitative phenomena. A student's rank in his graduation class involves the use of an ordinal scale.
Another example application are Likert-type items commonly employed in survey research, where respondents rate their agreement on an ordered scale (e.g., "Strongly disagree" to "Strongly agree"). The ordered logit model provides an appropriate fit to these data, preserving the ordering of response options while making no assumptions of the ...
An example is a preference ranking. Some data are measured at the interval level. Numbers indicate the magnitude of difference between items, but there is no absolute zero point. Examples are attitude scales and opinion scales. Some data are measured at the ratio level. Numbers indicate magnitude of difference and there is a fixed zero point.
The concept of data type is similar to the concept of level of measurement, but more specific. For example, count data requires a different distribution (e.g. a Poisson distribution or binomial distribution) than non-negative real-valued data require, but both fall under the same level of measurement (a ratio scale).
The main reason for using ordinal data in the OPA method is the accessibility and accuracy of the ordinal data compared with exact ratios used in group decision-making problems involved with humans. [6] In real-world situations, the experts might not have enough knowledge regarding one alternative or criterion.