Ad
related to: human knowledge in explainable ai process in healthcare management software
Search results
Results from the WOW.Com Content Network
Risk Management and Healthcare Policy. 17: 1339– 1348. doi: 10.2147/RMHP.S461562. Liu, Feng; Ju, Qianqian; Zheng, Qijian; Peng, Yujia (2024). "Artificial intelligence in mental health: innovations brought by artificial intelligence techniques in stress detection and interventions of building resilience". Current Opinion in Behavioral Sciences.
Artificial intelligence utilises massive amounts of data to help with predicting illness, prevention, and diagnosis, as well as patient monitoring. In obstetrics, artificial intelligence is utilized in magnetic resonance imaging, ultrasound, and foetal cardiotocography. AI contributes in the resolution of a variety of obstetrical diagnostic issues.
Marvin Minsky et al. raised the issue that AI can function as a form of surveillance, with the biases inherent in surveillance, suggesting HI (Humanistic Intelligence) as a way to create a more fair and balanced "human-in-the-loop" AI. [61] Explainable AI has been recently a new topic researched amongst the context of modern deep learning.
A pioneer in the use of artificial intelligence in healthcare was American biomedical informatician Edward H. Shortliffe. This field deals with utilization of machine-learning algorithms and artificial intelligence, to emulate human cognition in the analysis, interpretation, and comprehension of complicated medical and healthcare data.
A clinical decision support system (CDSS) is a health information technology that provides clinicians, staff, patients, and other individuals with knowledge and person-specific information to help health and health care. CDSS encompasses a variety of tools to enhance decision-making in the clinical workflow.
Knowledge-representation is a field of artificial intelligence that focuses on designing computer representations that capture information about the world that can be used for solving complex problems. The justification for knowledge representation is that conventional procedural code is not the best formalism to use to solve complex problems.
Artificial intelligence engineering (AI engineering) is a technical discipline that focuses on the design, development, and deployment of AI systems. AI engineering involves applying engineering principles and methodologies to create scalable, efficient, and reliable AI-based solutions.
Human feedback is commonly collected by prompting humans to rank instances of the agent's behavior. [15] [17] [18] These rankings can then be used to score outputs, for example, using the Elo rating system, which is an algorithm for calculating the relative skill levels of players in a game based only on the outcome of each game. [3]
Ad
related to: human knowledge in explainable ai process in healthcare management software