Search results
Results from the WOW.Com Content Network
In a 1960 review of Heisenberg's book, Bohr's close collaborator Léon Rosenfeld called the term an "ambiguous expression" and suggested it be discarded. [22] However, this did not come to pass, and the term entered widespread use. [16] [19] Bohr's ideas in particular are distinct despite the use of his Copenhagen home in the name of the ...
Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922.
The Bohr–Einstein debates were a series of public disputes about quantum mechanics between Albert Einstein and Niels Bohr. Their debates are remembered because of their importance to the philosophy of science , insofar as the disagreements—and the outcome of Bohr's version of quantum mechanics becoming the prevalent view—form the root of ...
When Albert Einstein introduced the light quantum in 1905, there was much resistance from the scientific community.However, when in 1923, the Compton effect showed the results could be explained by assuming the light beam behaves as light-quanta and that energy and momentum are conserved, Niels Bohr was still resistant against quantized light, even repudiating it in his 1922 Nobel Prize lecture.
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics principally attributed to Niels Bohr and Werner Heisenberg. It is one of the oldest attitudes towards quantum mechanics, as features of it date to the development of quantum mechanics during 1925–1927, and it remains one of the most commonly taught.
Wheeler indicates that Einstein and Bohr explored the consequences of the laboratory experiment that will be discussed below, one in which light can find its way from one corner of a rectangular array of semi-silvered and fully silvered mirrors to the other corner, and then can be made to reveal itself not only as having gone halfway around the ...
Niels Bohr obtains theoretically the value of the electron's magnetic dipole moment μ B as a consequence of his atom model; Johannes Stark and Antonino Lo Surdo independently discover the shifting and splitting of the spectral lines of atoms and molecules due to the presence of the light source in an external static electric field.
In the Bohr model, this restriction imposed on circular orbits was enough to determine the energy levels. In three dimensions, a rigid rotator can be described by two angles — θ {\displaystyle \theta } and ϕ {\displaystyle \phi } , where θ {\displaystyle \theta } is the inclination relative to an arbitrarily chosen z -axis while ϕ ...