Search results
Results from the WOW.Com Content Network
Typical components of a fluorescence microscope are a light source (xenon arc lamp or mercury-vapor lamp are common; more advanced forms are high-power LEDs and lasers), the excitation filter, the dichroic mirror (or dichroic beamsplitter), and the emission filter (see figure below).
The color transmitted by the filter exhibits a blue shift with increasing angle of incidence, see Dielectric mirror. In a dichroic mirror or filter, instead of using an oil film to produce the interference, alternating layers of optical coatings with different refractive indices are built up upon a glass substrate. The interfaces between the ...
In fluorescence microscopy, longpass filters are frequently utilized in dichroic mirrors and barrier (emission) filters. Use of the older term 'low pass' to describe longpass filters has become uncommon; filters are usually described in terms of wavelength rather than frequency, and a " low pass filter ", without qualification, would be ...
An excitation filter is commonly packaged with an emission filter and a dichroic beam splitter in a cube so that the group is inserted together into the microscope. The dichroic beam splitter controls which wavelengths of light go to their respective filter. [2] [3]
The resulting incoherent fluorescence is partially redirected through the objective and reflected off the second dichroic mirror into another dichroic mirror, which again reflects the beam into a band-pass filter before it passes into a photomultiplier tube (PMT). This signal is then imaged.
The original meaning of dichroic, from the Greek dikhroos, two-coloured, refers to any optical device which can split a beam of light into two beams with differing wavelengths. Such devices include mirrors and filters , usually treated with optical coatings , which are designed to reflect light over a certain range of wavelengths and transmit ...
Fluorescence-lifetime imaging microscopy or FLIM is an imaging technique based on the differences in the exponential decay rate of the photon emission of a fluorophore from a sample. It can be used as an imaging technique in confocal microscopy , two-photon excitation microscopy , and multiphoton tomography.
fiber optic terms (list) fiber optics; filter (optics) Fizeau's measurement of the speed of light in air; Flat mirror; fluorescence; focal length; focal point (optics) focus; Folded optics; Foucault's measurements of the speed of light; Fourier optics; Fraunhofer diffraction; Fraunhofer line; free-space optical communication; Augustin-Jean ...