Search results
Results from the WOW.Com Content Network
Cache hierarchy, or multi-level cache, is a memory architecture that uses a hierarchy of memory stores based on varying access speeds to cache data. Highly requested data is cached in high-speed access memory stores, allowing swifter access by central processing unit (CPU) cores.
To illustrate both specialization and multi-level caching, here is the cache hierarchy of the K8 core in the AMD Athlon 64 CPU. [59] Cache hierarchy of the K8 core in the AMD Athlon 64 CPU. The K8 has four specialized caches: an instruction cache, an instruction TLB, a data TLB, and a data cache. Each of these caches is specialized:
An optimal cache-oblivious algorithm is a cache-oblivious algorithm that uses the cache optimally (in an asymptotic sense, ignoring constant factors). Thus, a cache-oblivious algorithm is designed to perform well, without modification, on multiple machines with different cache sizes, or for a memory hierarchy with different levels of cache ...
Figure 2. Exclusive policy. Consider the case when L2 is exclusive of L1. Suppose there is a processor read request for block X. If the block is found in L1 cache, then the data is read from L1 cache and returned to the processor.
Memory hierarchy of an AMD Bulldozer server. The number of levels in the memory hierarchy and the performance at each level has increased over time. The type of memory or storage components also change historically. [6] For example, the memory hierarchy of an Intel Haswell Mobile [7] processor circa 2013 is:
Diagram of a CPU memory cache operation. In computing, a cache (/ k æ ʃ / ⓘ KASH) [1] is a hardware or software component that stores data so that future requests for that data can be served faster; the data stored in a cache might be the result of an earlier computation or a copy of data stored elsewhere.
The tag bits are compared with the tags of all cache lines present in selected set. If the tag matches any of the cache lines, it is a cache hit and the appropriate line is returned. If the tag does not match any of the lines, then it is a cache miss and the data is requested from next level in the memory hierarchy.
In computing, cache replacement policies (also known as cache replacement algorithms or cache algorithms) are optimizing instructions or algorithms which a computer program or hardware-maintained structure can utilize to manage a cache of information. Caching improves performance by keeping recent or often-used data items in memory locations ...