Search results
Results from the WOW.Com Content Network
Cache hierarchy, or multi-level cache, is a memory architecture that uses a hierarchy of memory stores based on varying access speeds to cache data. Highly requested data is cached in high-speed access memory stores, allowing swifter access by central processing unit (CPU) cores.
Processor performance increase due to cache hierarchy depends on the number of accesses to the cache that satisfy block requests from the cache (cache hits) versus those that do not. Unsuccessful attempts to read or write data from the cache (cache misses) result in lower level or main memory access, which increases latency.
Suppose there is a processor read request for block X. If the block is found in L1 cache, then the data is read from L1 cache and returned to the processor. If the block is not found in the L1 cache, but present in the L2 cache, then the cache block is fetched from the L2 cache and placed in L1.
In a multilevel cache hierarchy, the miss pattern of the higher level cache becomes the re-reference pattern of the immediate lower level cache.Hartstein et al. [4] found that whereas the cache misses for lower levels do not follow a strict power law, as long as the lower level cache is considerably larger than the higher level cache, the miss rate function can be approximated to the power law.
There are several memory banks which are one word wide, and one word wide bus. There is some logic in the memory that selects the correct bank to use when the memory gets accessed by the cache. Memory interleaving is a way to distribute individual addresses over memory modules. Its aim is to keep the most of modules busy as computations proceed.
A CPU cache is a hardware cache used by the central processing unit (CPU) of a computer to reduce the average cost (time or energy) to access data from the main memory. [1] A cache is a smaller, faster memory, located closer to a processor core, which stores copies of the data from frequently used main memory locations.
An optimal cache-oblivious algorithm is a cache-oblivious algorithm that uses the cache optimally (in an asymptotic sense, ignoring constant factors). Thus, a cache-oblivious algorithm is designed to perform well, without modification, on multiple machines with different cache sizes, or for a memory hierarchy with different levels of cache ...
Cache coloring; Cache hierarchy; Cache inclusion policy; Cache line; Cache manifest in HTML5; Cache on a stick; Cache performance measurement and metric; Cache placement policies; Cache poisoning; Cache pollution; Cache prefetching; Cache stampede; Cache thrashing; Cache-oblivious algorithm; Cache-oblivious distribution sort; Ccache; Coherency ...