Search results
Results from the WOW.Com Content Network
Interaction energy of an argon dimer.The long-range section is due to London dispersion forces. London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically ...
One example of an induction interaction between permanent dipole and induced dipole is the interaction between HCl and Ar. In this system, Ar experiences a dipole as its electrons are attracted (to the H side of HCl) or repelled (from the Cl side) by HCl. [12] [13] The angle averaged interaction is given by the following equation:
A dipole-induced dipole interaction (Debye force) is due to the approach of a molecule with a permanent dipole to another non-polar molecule with no permanent dipole. This approach causes the electrons of the non-polar molecule to be polarized toward or away from the dipole (or "induce" a dipole) of the approaching molecule. [ 13 ]
The size of the induced dipole moment is equal to the product of the strength of the external field and the dipole polarizability of ρ. Dipole moment values can be obtained from measurement of the dielectric constant. Some typical gas phase values given with the unit debye are: [7] carbon dioxide: 0; carbon monoxide: 0.112 D; ozone: 0.53 D
By truncating this expansion (for example, retaining only the dipole terms, or only the dipole and quadrupole terms, or etc.), the results of the previous section are regained. In particular, truncating the expansion at the dipole term, the result is indistinguishable from the polarization density generated by a uniform dipole moment confined ...
Debye forces, or dipole–induced dipole interactions, can also play a role in dispersive adhesion. These come about when a nonpolar molecule becomes temporarily polarized due to interaction with a nearby polar molecule. This "induced dipole" in the nonpolar molecule then is attracted to the permanent dipole, yielding a Debye attraction.
An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field. Following reference, [ 1 ] consider an electron in an atom with quantum Hamiltonian H 0 {\displaystyle H_{0}} , interacting with a plane electromagnetic wave
Van der Waals forces are often among the weakest chemical forces. For example, the pairwise attractive van der Waals interaction energy between H atoms in different H 2 molecules equals 0.06 kJ/mol (0.6 meV) and the pairwise attractive interaction energy between O atoms in different O 2 molecules equals 0.44 kJ/mol (4.6 meV). [9]