Search results
Results from the WOW.Com Content Network
A simple but very useful consequence of L'Hopital's rule is that the derivative of a function cannot have a removable discontinuity. That is, suppose that f is continuous at a , and that f ′ ( x ) {\displaystyle f'(x)} exists for all x in some open interval containing a , except perhaps for x = a {\displaystyle x=a} .
Guillaume François Antoine, Marquis de l'Hôpital [1] (French: [ɡijom fʁɑ̃swa ɑ̃twan maʁki də lopital]; sometimes spelled L'Hospital; 1661 – 2 February 1704) [a] was a French mathematician. His name is firmly associated with l'Hôpital's rule for calculating limits involving indeterminate forms 0/0 and ∞/∞.
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero. [3] [4]
Analyse des infiniment petits pour l'intelligence des lignes courbes, 1715 edition. Analyse des Infiniment Petits pour l'Intelligence des Lignes Courbes (literal translation: Analysis of the infinitely small to understand curves), 1696, is the first textbook published on the infinitesimal calculus of Leibniz.
Binary notation had not yet been standardized, so Napier used what he called location numerals to represent binary numbers. Napier's system uses sign-value notation to represent numbers; it uses successive letters from the Latin alphabet to represent successive powers of two: a = 2 0 = 1, b = 2 1 = 2, c = 2 2 = 4, d = 2 3 = 8, e = 2 4 = 16 and so on.
Months after its $80 million Series B fundraise, Course Hero has acquired Symbolab, an artificial intelligence-powered calculator that helps students answer and understand complex math questions.
If n is an even superperfect number, then n must be a power of 2, 2 k, such that 2 k+1 − 1 is a Mersenne prime. [1] [2] It is not known whether there are any odd superperfect numbers. An odd superperfect number n would have to be a square number such that either n or σ(n) is divisible by at least three distinct primes. [2]
If the "numerator" is 1, rules 3 and 4 give a result of 1. If the "numerator" and "denominator" are not coprime, rule 3 gives a result of 0. Otherwise, the "numerator" and "denominator" are now odd positive coprime integers, so we can flip the symbol using rule 6, then return to step 1.