Search results
Results from the WOW.Com Content Network
Continental-continental divergent/constructive boundary Oceanic divergent boundary: mid-ocean ridge (cross-section/cut-away view). In plate tectonics, a divergent boundary or divergent plate boundary (also known as a constructive boundary or an extensional boundary) is a linear feature that exists between two tectonic plates that are moving away from each other.
This feature is where seafloor spreading takes place along a divergent plate boundary. The rate of seafloor spreading determines the morphology of the crest of the mid-ocean ridge and its width in an ocean basin. The production of new seafloor and oceanic lithosphere results from mantle upwelling in response to plate separation.
This paradoxically results in divergence which was only incorporated in the theory of plate tectonics in 1970, but still results in net destruction when summed over major plate boundaries. [2] Divergent boundaries are areas where plates move away from each other, forming either mid-ocean ridges or rift valleys. These are also known as ...
The Mid-Atlantic Ridge is a mid-ocean ridge (a divergent or constructive plate boundary) located along the floor of the Atlantic Ocean, and part of the longest mountain range in the world. In the North Atlantic, the ridge separates the North American from the Eurasian plate and the African plate, north and south of the Azores triple junction.
The term had traditionally been used for the intersection of three divergent boundaries or spreading ridges. These three divergent boundaries ideally meet at near 120° angles. In plate tectonics theory during the breakup of a continent, three divergent boundaries form, radiating out from a central point (the triple junction).
Transform faults are plate boundaries, meaning that on either side of the fault is a different plate. In contrast, outside of the ridge-ridge transform fault, the crust on both sides belongs to the same plate, and there is no relative motion along the junction. [ 3 ]
Most convergent boundaries involve oblique subduction, [3] particularly in the Ring of Fire including the Ryukyu, Aleutian, Central America and Chile subduction zones. [4] In general, the obliquity angle is between 15° and 30°. [5] Subduction zones with high obliquity angles include Sunda trench (ca. 60°) and Ryukyu arc (ca. 50°). [5]
Strike-slip tectonics or wrench tectonics is a type of tectonics that is dominated by lateral (horizontal) movements within the Earth's crust (and lithosphere).Where a zone of strike-slip tectonics forms the boundary between two tectonic plates, this is known as a transform or conservative plate boundary.