Search results
Results from the WOW.Com Content Network
The self-ionization of water (also autoionization of water, autoprotolysis of water, autodissociation of water, or simply dissociation of water) is an ionization reaction in pure water or in an aqueous solution, in which a water molecule, H 2 O, deprotonates (loses the nucleus of one of its hydrogen atoms) to become a hydroxide ion, OH −.
A body is said to be "free" when it is singled out from other bodies for the purposes of dynamic or static analysis. The object does not have to be "free" in the sense of being unforced, and it may or may not be in a state of equilibrium; rather, it is not fixed in place and is thus "free" to move in response to forces and torques it may experience.
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will cause an excess of products, and the system will try to counteract this by increasing the reverse reaction and pushing the ...
The time to reach equilibrium depends on parameters such as temperature, pressure, and the materials involved, and is determined by the minimum free energy. In equilibrium, the Gibbs free energy of reaction must be zero. The pressure dependence can be explained with the Le Chatelier's principle. For example, an increase in pressure due to ...
Equilibrium chemistry is concerned with systems in chemical equilibrium.The unifying principle is that the free energy of a system at equilibrium is the minimum possible, so that the slope of the free energy with respect to the reaction coordinate is zero.
Le Chatelier–Braun principle analyzes the qualitative behaviour of a thermodynamic system when a particular one of its externally controlled state variables, say , changes by an amount , the 'driving change', causing a change , the 'response of prime interest', in its conjugate state variable , all other externally controlled state variables remaining constant.
At equilibrium, the rate of transfer of CO 2 from the gas to the liquid phase is equal to the rate from liquid to gas. In this case, the equilibrium concentration of CO 2 in the liquid is given by Henry's law, which states that the solubility of a gas in a liquid is directly proportional to the partial pressure of that gas above the liquid. [1]
These concepts of temperature and of thermal equilibrium are fundamental to thermodynamics and were clearly stated in the nineteenth century. The name 'zeroth law' was invented by Ralph H. Fowler in the 1930s, long after the first, second, and third laws were widely recognized.