Search results
Results from the WOW.Com Content Network
The relational algebra uses set union, set difference, and Cartesian product from set theory, and adds additional constraints to these operators to create new ones.. For set union and set difference, the two relations involved must be union-compatible—that is, the two relations must have the same set of attributes.
A relation algebra (L, ∧, ∨, −, 0, 1, •, I, ˘) is an algebraic structure equipped with the Boolean operations of conjunction x∧y, disjunction x∨y, and negation x −, the Boolean constants 0 and 1, the relational operations of composition x•y and converse x˘, and the relational constant I, such that these operations and constants satisfy certain equations constituting an ...
Codd's theorem states that relational algebra and the domain-independent relational calculus queries, two well-known foundational query languages for the relational model, are precisely equivalent in expressive power. That is, a database query can be formulated in one language if and only if it can be expressed in the other.
For example, "1 < 3", "1 is less than 3", and "(1,3) ∈ R less" mean all the same; some authors also write "(1,3) ∈ (<)". Various properties of relations are investigated. A relation R is reflexive if xRx holds for all x, and irreflexive if xRx holds for no x. It is symmetric if xRy always implies yRx, and asymmetric if xRy implies that yRx ...
In relational algebra, a selection (sometimes called a restriction in reference to E.F. Codd's 1970 paper [1] and not, contrary to a popular belief, to avoid confusion with SQL's use of SELECT, since Codd's article predates the existence of SQL) is a unary operation that denotes a subset of a relation.
Download as PDF; Printable version; In other projects ... Pages in category "Relational algebra" ... Selection (relational algebra) String operations This page was ...
A small circle () has been used for the infix notation of composition of relations by John M. Howie in his books considering semigroups of relations. [10] However, the small circle is widely used to represent composition of functions g ( f ( x ) ) = ( g ∘ f ) ( x ) {\displaystyle g(f(x))=(g\circ f)(x)} , which reverses the text sequence from ...
In relational algebra, a rename is a unary operation written as / where: R is a relation; a and b are attribute names; b is an attribute of R; The result is identical to R except that the b attribute in all tuples is renamed to a. [1]