enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    For example, in economics the optimal profit to a player is calculated subject to a constrained space of actions, where a Lagrange multiplier is the change in the optimal value of the objective function (profit) due to the relaxation of a given constraint (e.g. through a change in income); in such a context is the marginal cost of the ...

  3. Lagrangian relaxation - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_relaxation

    Of particular use is the property that for any fixed set of ~ values, the optimal result to the Lagrangian relaxation problem will be no smaller than the optimal result to the original problem. To see this, let x ^ {\displaystyle {\hat {x}}} be the optimal solution to the original problem, and let x ¯ {\displaystyle {\bar {x}}} be the optimal ...

  4. Ridge regression - Wikipedia

    en.wikipedia.org/wiki/Ridge_regression

    It can be shown that this estimator is the solution to the least squares problem subject to the constraint =, which can be expressed as a Lagrangian minimization: ^ = () + which shows that is nothing but the Lagrange multiplier of the constraint. [9] In fact, there is a one-to-one relationship between and and since, in practice, we do not know ...

  5. Augmented Lagrangian method - Wikipedia

    en.wikipedia.org/wiki/Augmented_Lagrangian_method

    Augmented Lagrangian methods are a certain class of algorithms for solving constrained optimization problems. They have similarities to penalty methods in that they replace a constrained optimization problem by a series of unconstrained problems and add a penalty term to the objective, but the augmented Lagrangian method adds yet another term designed to mimic a Lagrange multiplier.

  6. Lambda calculus - Wikipedia

    en.wikipedia.org/wiki/Lambda_calculus

    Lambda calculus is Turing complete, that is, it is a universal model of computation that can be used to simulate any Turing machine. [3] Its namesake, the Greek letter lambda (λ), is used in lambda expressions and lambda terms to denote binding a variable in a function.

  7. Let expression - Wikipedia

    en.wikipedia.org/wiki/Let_expression

    In this way any expression on functions of multiple values may be treated as if it had one value. It is not sufficient for the form to represent only the set of values. Each value must have a condition that determines when the expression takes the value. The resulting construct is a set of pairs of conditions and values, called a "value set".

  8. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    The lowest upper bound is sought. That is, the dual vector is minimized in order to remove slack between the candidate positions of the constraints and the actual optimum. An infeasible value of the dual vector is one that is too low. It sets the candidate positions of one or more of the constraints in a position that excludes the actual optimum.

  9. Lambda lifting - Wikipedia

    en.wikipedia.org/wiki/Lambda_lifting

    However it does not demonstrate the soundness of lambda calculus for deduction, as the eta reduction used in lambda lifting is the step that introduces cardinality problems into the lambda calculus, because it removes the value from the variable, without first checking that there is only one value that satisfies the conditions on the variable ...