Search results
Results from the WOW.Com Content Network
The dual theorem states that of all quadrilaterals with a given area, the square has the shortest perimeter. The quadrilateral with given side lengths that has the maximum area is the cyclic quadrilateral. [43] Of all convex quadrilaterals with given diagonals, the orthodiagonal quadrilateral has the largest area.
Quadrilaterals that are both orthodiagonal and equidiagonal are called midsquare quadrilaterals because they are the only ones for which the Varignon parallelogram (with vertices at the midpoints of the quadrilateral's sides) is a square. [4]: p. 137
A square is a special case of a rhombus (equal sides, opposite equal angles), a kite (two pairs of adjacent equal sides), a trapezoid (one pair of opposite sides parallel), a parallelogram (all opposite sides parallel), a quadrilateral or tetragon (four-sided polygon), and a rectangle (opposite sides equal, right-angles), [1] and therefore has ...
A right trapezoid (also called right-angled trapezoid) has two adjacent right angles. [15] Right trapezoids are used in the trapezoidal rule for estimating areas under a curve. An acute trapezoid has two adjacent acute angles on its longer base edge. An obtuse trapezoid on the other hand has one acute and one obtuse angle on each base.
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...
Square (regular quadrilateral) Tangential quadrilateral; Trapezoid. Isosceles trapezoid; Trapezus; Pentagon – 5 sides; Hexagon – 6 sides Lemoine hexagon; Heptagon – 7 sides; Octagon – 8 sides; Nonagon – 9 sides; Decagon – 10 sides; Hendecagon – 11 sides; Dodecagon – 12 sides; Tridecagon – 13 sides; Tetradecagon – 14 sides ...
For instance, polygons are classified according to their number of edges as triangles, quadrilaterals, pentagons, etc. Each of these is divided into smaller categories; triangles can be equilateral, isosceles, obtuse, acute, scalene, etc. while quadrilaterals can be rectangles, rhombi, trapezoids, squares, etc.
The elements of a polytope can be considered according to either their own dimensionality or how many dimensions "down" they are from the body.