enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    As shown in an earlier example, the solution of Equation is the exponential = /. Equation is the time-independent Schrödinger equation. The eigenfunctions φ k of the Hamiltonian operator are stationary states of the quantum mechanical system, each with a corresponding energy E k. They represent allowable energy states of the system and may be ...

  3. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.

  4. Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_equation

    The Helmholtz equation has a variety of applications in physics and other sciences, including the wave equation, the diffusion equation, and the Schrödinger equation for a free particle. In optics, the Helmholtz equation is the wave equation for the electric field. [1] The equation is named after Hermann von Helmholtz, who studied it in 1860. [2]

  5. Stationary state - Wikipedia

    en.wikipedia.org/wiki/Stationary_state

    A harmonic oscillator in classical mechanics (A–B) and quantum mechanics (C–H). In (A–B), a ball, attached to a spring, oscillates back and forth.(C–H) are six solutions to the Schrödinger equation for this situation.

  6. Variational method (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Variational_method...

    Suppose we are given a Hilbert space and a Hermitian operator over it called the Hamiltonian.Ignoring complications about continuous spectra, we consider the discrete spectrum of and a basis of eigenvectors {| } (see spectral theorem for Hermitian operators for the mathematical background): | =, where is the Kronecker delta = {, =, and the {| } satisfy the eigenvalue equation | = | .

  7. Position operator - Wikipedia

    en.wikipedia.org/wiki/Position_operator

    The eigenfunctions of the position operator (on the space of tempered distributions), represented in position space, are Dirac delta functions. Informal proof. To show that possible eigenvectors of the position operator should necessarily be Dirac delta distributions, suppose that ψ {\displaystyle \psi } is an eigenstate of the position ...

  8. Complete set of commuting observables - Wikipedia

    en.wikipedia.org/wiki/Complete_set_of_commuting...

    Proof that a common eigenbasis implies commutation. Let {| } be a set of orthonormal states (i.e., | =,) that form a complete eigenbasis for each of the two compatible observables and represented by the self-adjoint operators ^ and ^ with corresponding (real-valued) eigenvalues {} and {}, respectively.

  9. Spectral theory of ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory_of...

    After imposing initial conditions on the first two derivatives at a fixed point c, this equation can be solved explicitly in terms of the two fundamental eigenfunctions and the "initial value" functionals () = (,), ′ = (,).