Search results
Results from the WOW.Com Content Network
This classification has no direct relation with the common usage of the word "fragility" to mean brittleness. Viscous flow in amorphous materials is characterised by deviations from the Arrhenius-type behaviour: the activation energy of viscosity Q changes from a high value Q H at low temperatures (in the glassy state) to a low value Q L at ...
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
For liquid, the dynamic viscosity is usually in the range of 0.001 to 1 Pascal-second, or 1 to 1000 centiPoise. The density is usually on the order of 1000 kg/m^3, i.e. that of water. Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n ...
In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return ...
An element of a flowing liquid or gas will endure forces from the surrounding fluid, including viscous stress forces that cause it to gradually deform over time. These forces can be mathematically first order approximated by a viscous stress tensor , usually denoted by τ {\displaystyle \tau } .
The sudden application of force—by stabbing the surface with a finger, for example, or rapidly inverting the container holding it—causes the fluid to behave like a solid rather than a liquid. This is the " shear thickening " property of this non-Newtonian fluid.
The shear viscosity (or viscosity, in short) of a fluid is a material property that describes the friction between internal neighboring fluid surfaces (or sheets) flowing with different fluid velocities.
The Reynolds number is the ratio of inertial forces to viscous forces within a fluid that is subjected to relative internal movement due to different fluid velocities. A region where these forces change behavior is known as a boundary layer, such as the bounding surface in the interior of a pipe.