enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Batch normalization - Wikipedia

    en.wikipedia.org/wiki/Batch_normalization

    Batch normalization (also known as batch norm) is a method used to make training of artificial neural networks faster and more stable through normalization of the layers' inputs by re-centering and re-scaling. It was proposed by Sergey Ioffe and Christian Szegedy in 2015.

  3. Normalization (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Normalization_(machine...

    where is the batch size, is the height of the feature map, and is the width of the feature map. That is, even though there are only B {\displaystyle B} data points in a batch, all B H W {\displaystyle BHW} outputs from the kernel in this batch are treated equally.

  4. Hyperparameter (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Hyperparameter_(machine...

    In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).

  5. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    The values of parameters are derived via learning. Examples of hyperparameters include learning rate, the number of hidden layers and batch size. [citation needed] The values of some hyperparameters can be dependent on those of other hyperparameters. For example, the size of some layers can depend on the overall number of layers. [citation needed]

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Learning curve (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Learning_curve_(machine...

    In machine learning (ML), a learning curve (or training curve) is a graphical representation that shows how a model's performance on a training set (and usually a validation set) changes with the number of training iterations (epochs) or the amount of training data. [1]

  8. Chinchilla (language model) - Wikipedia

    en.wikipedia.org/wiki/Chinchilla_(language_model)

    The Chinchilla team recommends that the number of training tokens is twice for every model size doubling, meaning that using larger, higher-quality training datasets can lead to better results on downstream tasks. [5] [6] It has been used for the Flamingo vision-language model. [7]

  9. Vapnik–Chervonenkis theory - Wikipedia

    en.wikipedia.org/wiki/Vapnik–Chervonenkis_theory

    The VC-index (similar to VC dimension + 1 for an appropriately chosen classifier set) () of is the smallest n for which no set of size n is shattered by . Sauer's lemma then states that the number Δ n ( C , x 1 , … , x n ) {\displaystyle \Delta _{n}({\mathcal {C}},x_{1},\ldots ,x_{n})} of subsets picked out by a VC-class C {\displaystyle ...